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a  b  s  t  r  a  c  t

Aversive  pavlovian  delay  conditioning  was  investigated  in a sample  of  11  criminal  psychopaths  as  iden-
tified  by  using  the  Psychopathy  Checklist-Revised  and 11 matched  healthy  controls.  A painful  electric
stimulus  served  as  unconditioned  stimulus  and  neutral  faces  as conditioned  stimuli.  Event-related  poten-
tials, startle  response  potentiation,  skin  conductance  response,  corrugator  activity,  and  heart  rate  were
eywords:
sychopathy
avlovian conditioning
versive learning
EG

assessed,  along  with  valence,  arousal,  and  contingency  ratings  of  the  CS  and  US.  Compared  to  healthy
controls,  psychopathic  subjects  failed  to differentiate  between  the  CS+/CS− as shown  by an  absence  of
a conditioned  response  in  startle  potentiation  and  skin  conductance  measures.  Through  use  of  a  fear-
eliciting  US,  these  data  confirm  previous  findings  of  a deficient  capacity  to form  associations  between
neutral  and  aversive  events  in  psychopathy  that  appears  unrelated  to  cognitive  deficits  and  is consistent
with hypothesized  frontolimbic  deficits  in the disorder.
tartle

. Introduction

Previous research indicates that psychopathy as indexed
y Hare’s (1991, 2003) Psychopathy Checklist-Revised (PCL-
) encompasses two distinguishable symptomatic components
factors)—emotional detachment and antisocial deviance (cf. Hare
t al., 1991; Patrick et al., 1993)—that can be further partitioned
nto affective, interpersonal, lifestyle, and behavioral facets (Cooke
nd Michie, 2001; Hare, 2003; Hare and Neumann, 2005; Vitacco
t al., 2006). In contrast with healthy controls, high psychopathic
ndividuals appear deficient in the capacity to form appropriate
ssociations between a cue and an aversive (Hare et al., 1978; Flor
t al., 2002) or fear-evoking event (Patrick et al., 1994; Birbaumer
t al., 2005)—despite intact cognitive processing of stimuli (Flor

t al., 2002; Birbaumer et al., 2005; Kiehl, 2006).

In healthy individuals, aversive or threatening cues result in
he mobilization of defensive actions, which can be measured by
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fear-associated responses such as the startle reflex that increase
during presentation of aversive stimuli (Davis, 1989; Lang et al.,
1990; Patrick et al., 1996). In psychopathic individuals, who are
theorized to lack the ability to anticipate and learn from punish-
ment (Lykken, 1957; Hare and Quinn, 1971; Hare et al., 1978; Veit
et al., 2002; Blair, 2004; Birbaumer et al., 2005; Mitchell et al., 2006),
the fear-associated startle reflex has been found to be diminished
or absent (Patrick et al., 1993; Levenston et al., 2000; Pastor et al.,
2003; Benning et al., 2005). Startle potentiation in response to aver-
sive events (Davis, 1992; Angrilli et al., 1996; Pissiota et al., 2003)
as well as an anticipatory skin conductance response (Bechara
et al., 1999) are known to be mediated by amygdalar connec-
tions, suggesting a deficit in the amygdala or affiliated structures
in psychopathic individuals. Consistent with this, recent imaging
studies have revealed reduced activity in limbic circuits including
the amygdala in individuals with psychopathy (Kiehl et al., 2001;
Birbaumer et al., 2005; Mitchell et al., 2006). Other imaging work
focusing on functional or structural frontal brain abnormalities has
yielded evidence of decreased activity in orbito-frontal and limbic
regions (Veit et al., 2002; Birbaumer et al., 2005) and reduced pre-
frontal volume of gray matter (Raine et al., 2000; Yang et al., 2005),

indicating decreased activity in emotion processing circuits in high
psychopathic individuals.

In contrast with these apparent deficits, cognitive process-
ing of affective stimuli in psychopaths appears to be intact as

dx.doi.org/10.1016/j.biopsycho.2012.02.011
http://www.sciencedirect.com/science/journal/03010511
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emonstrated by studies showing overactivation in frontotempo-
al areas (Kiehl et al., 2001) and an enhanced P300 brain response
t frontal electrode sites (Flor et al., 2002). Taken together, these
ndings support the theory of psychopathy as involving a specific
ype of emotional dysfunction as proposed by Blair (2004).  Accord-
ng to Blair’s model, altered activation in the amygdala as well as
he ventrolateral and orbitofrontal cortex leads to deficiencies in
asic emotional activation to stimuli that have motivational signif-

cance (cf. Lang et al., 1997). The cognitive evaluation of stimulus
ontingencies, however, should be unimpaired.

Newman et al. (1997) proposed the response modulation model
hich posits that psychopaths’ deficient emotional responses may

e a consequence of a dysfunction in attentional control. According
o this model, the processing of emotional information is pro-
osed to be diminished in situations where this information is not
ecessary for the ongoing task, resulting in differences between
sychopaths and healthy controls that have been misinterpreted
s innate fearlessness in psychopaths. An advantage of this model
s that it yields testable hypotheses on the influences of situational
ariables on task performance (Newman et al., 2010). Empirical
upport for the model comes from studies reporting reduced inter-
erence in psychopaths in the Stroop task under certain conditions
e.g., Blair et al., 2006), which is not readily explained by models
ased on emotion dysfunction (Blair et al., 2005). However, the
pecific reduction of interference in certain Stroop test paradigms
as been identified as a challenge to Newman’s response modula-
ion model (Blair and Mitchell, 2009). In addition, the ability of this

odel to accommodate other empirical findings of psychopathy
emains a topic of debate (Blair and Mitchell, 2009).

In a previous conditioning study (Flor et al., 2002) we used
versive odors rather than painful stimulation in studying evoked
esponses and peripheral psychophysiological responses in psy-
hopaths. However, this was not a true fear conditioning study, as
npleasant odors may  evoke disgust rather than fear and may  be
ore related to activations of the anterior insula and the anterior

ingulate cortex (Wicker et al., 2003). For the study of fear condi-
ioning, a painful electric shock has traditionally been used as an
nconditioned stimulus (Hamm and Weike, 2005). However, find-

ngs on altered pain perception in psychopaths have been mixed,
ith a heightened threshold for pain reported in one study (Fedora

nd Reddon, 1993), but not in others (e.g., Hare, 1968). In a follow-
p functional magnetic resonance imaging (fMRI) study that used
ainful shock as the unconditioned stimulus (US) Birbaumer et al.
2005) found a lack of conditionability in high psychopathic indi-
iduals along with deficient activation of a frontolimbic circuit
omprising the orbitofrontal cortex, the amygdala, the insula, and
he anterior cingulate cortex, in conjunction with regional activa-
ions indicating normal perception of the US.

The purpose of the present study was to examine peripheral and
entral correlates of fear conditioning in high psychopathic individ-
als using the same unconditioned and conditioned (CS) stimuli
i.e., painful shock and neutral face images) that were used in the
forementioned fMRI study. Since in that study, the processing of
he CSs and the US as well as the processing of CS-US consistency
id not seem to be compromised in psychopathic individuals, we
ypothesized that psychopathic participants would show intact

nformation processing as indexed by normal event-related poten-
ial (ERP) responses to the CS and US, as well as contingency ratings
omparable to those of control subjects. The ERP components
nvestigated in the current study were based on our previous condi-
ioning study (Flor et al., 2002): there, the N100 component showed
ignificant CS+/CS− differentiation in individuals with psychopa-

hy, but not in the healthy controls, during periods of the acquisition
hase. The psychopathic group also displayed an increased P200
mplitude to the CS+ during the acquisition phase, which is consid-
red to reflect increased stimulus intake (Siegel, 1997). This pattern
sychology 90 (2012) 50– 59 51

of results was interpreted as evidence for a specific emotional
deficit in psychopathy, unrelated to alterations in attentional pro-
cessing. The P300 response, which has been found to be enhanced
in amplitude for psychopaths in some studies (Raine, 1992) and
decreased in others (Kiehl et al., 1999a),  displayed differential con-
ditioning in frontal regions only, supporting the assumption that
attentional processing in frontal areas is intact in psychopathic indi-
viduals (Kiehl et al., 1999b). One additional brain potential response
that is known to reflect stimulus expectancy (Rosahl and Knight,
1995; Mnatsakanian and Tarkka, 2002), the contingent negative
variation (CNV) has been shown to be altered in psychopaths dur-
ing anticipation of aversive stimuli (Forth and Hare, 1989). Since the
initial and terminal components of the CNV (iCNV, tCNV) differed
between the groups and across phases in our previous study, we
examined these components separately in the current study. Also,
as in Flor et al. (2002), we  investigated the late positive complex
(LPC), which prior has shown to differentiate the reactions of psy-
chopathic subjects and healthy controls to affective stimuli versus
neutral (e.g., Williamson et al., 1991; Kiehl et al., 1999a,b).

At the same time, in line with the results of Flor et al. (2002),
we hypothesized that psychopathic participants would show defi-
cient emotional conditioning as indexed by a failure to differentiate
between CS+ and CS− in valence and arousal ratings. We  further
hypothesized a lack of differentiation in response to CS+ versus
CS− for startle potentiation, corrugator EMG reactivity, heart rate
(HR), and skin conductance response (SCR), and in anticipation of
US delivery for CNV. Regarding skin conductance, we  hypothesized
a lack of responsivity in the psychopathy group on the basis of prior
findings (Hare and Quinn, 1971; Flor et al., 2002), but not neces-
sarily in conjunction with altered self-reported arousal ratings as
would be expected for healthy controls (Flor et al., 2002; Cleckley,
1955). The hypothesized lack of startle potentiation to the CS is
considered to be a more specific indicator of impaired defensive
activation than lack of SCR differentiation (Lang et al., 1990) and has
been demonstrated specifically in relation to the emotional detach-
ment (‘Factor 1’) component of psychopathy (Patrick, 1994). In the
case of HR, our previous results contradicted earlier findings (e.g.,
Hare and Craigen, 1974; Hare et al., 1978), precluding clear a priori
hypotheses.

2. Methods

2.1. Participants

Eleven psychopathic men (PPs) with prior criminal records and 11 healthy male
controls (HCs) participated in the study. The PPs consisted of offenders either on
bail  and awaiting trial or on parole who were selected from a larger sample on the
basis of scores on a screening version of the PCL-R (PCL-SV; Hart et al., 1995). The
control subjects were recruited by signs posted in the university and local super-
markets. Exclusion criteria for the study were as follows: (a) age below 18 or over
45, (b) left-handedness, (c) history of cardiovascular or mental disorder, (d) his-
tory of drug or alcohol dependence, and (e) intake of alcohol or drugs within the
previous 12 h. The mean age was  31 years (SD = 6.4, range = 22–40) for the PPs and
28 years (SD = 6.7, range = 22–43) for the HCs (t(20) = 1.2; n.s.; d = 0.54). The groups
were matched in terms of employment status (categories: unemployed, employed,
training/apprenticeship and student; Z = −0.92; n.s.). Procedures for the study were
approved by the local Human Subjects Committee and adhered to the Human Sub-
jects Guidelines of the Declaration of Helsinki. All participants were informed about
the  nature of the study and provided written informed consent prior to participa-
tion. The psychopathic participants received 80 Euros, and the controls 40 Euros, for
their participation.

The overall mean PCL-SV score for individuals screened for inclusion in the PP
group was  15.45 (SD = 2.54; range = 12–21), with Ms of 9.55 (SD = 1.29; range = 8–12)
for  Factor 1 and 5.90 (SD = 1.81; range = 2–9) for Factor 2. Subjects with Factor 1
scores of 8 or higher were included in the PP group, without regard to scores on
Factor 2. We emphasized Factor 1 of the PCL-SV (Emotional Detachment) in the

selection of participants over Factor 2 (Antisocial Behavior) because (a) scores on
Factor 1 are more predictive of deficits in emotional reactivity (e.g., Patrick, 1994;
Verona et al., 2004; Vanman et al., 2003; Vaidyanathan et al., 2011), and (b) scores on
Factor 2 were expected to be generally lower for non-incarcerated individuals with
criminal records than for incarcerated offenders. Control subjects had an overall
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Table  1
Comparison of PPs and HCs with respect to US characteristics prior to the
experiment.

US characteristic PPs M (SD) HCs M (SD) t-Value p-Value

Stimulus intensity 4.83 (2.82) 4.47 (1.96) 0.34 ns
Sensory threshold 2.87 (2.07) 2.65 (1.82) 0.25 ns
Pain  threshold 4.31 (2.74) 3.89 (1.81) 0.41 ns
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Separate analyses were performed for each response parameter within each
Pain  tolerance 5.33 (2.82) 4.90 (2.09) 0.40 ns

ote: Units of measurement for all stimulus characteristic values are mA.

core of 2.09 (SD = 1.14; range = 1–4) on the PCL-SV, with values of 0.64 (SD = 0.67;
ange = 0–2) for Factor 1 and 1.45 (SD = 1.13; range = 0–4) for Factor 2.

Individuals screened for inclusion in the PP group were administered the full
CL-R at the time of testing, along with the German Version (Margraf et al., 1991)
f the Anxiety Disorders Interview Schedule (ADIS, Di Nardo et al., 1983; Barlow
t  al., 1986), which assesses for symptoms of anxiety disorders and related diagnos-
ic  conditions. The mean overall PCL-R score for the PP group was  24.7 (SD = 4.45;
ange = 15–31), which is lower than values typically reported for high-psychopathic
amples in American studies, but in the high-psychopathic range according to the
erman norms for the PCL-R (Ullrich et al., 2003). Importantly, all individuals in

he  PP group received scores of 10 or higher on Factor 1 of the PCL-R (M = 12.0;
D = 1.1; range = 10–14), which approximates 2/3 of the maximum possible score of
6. Scores on PCL-R Factor 2 were generally lower (M = 8.7; SD = 3.26; range = 3–13).
onetheless, all individuals in the PP group met  full criteria for a diagnosis of anti-

ocial personality disorder according to DSM-IV-TR criteria (American Psychiatric
ssociation, 2000).

All participants also completed the German version of the Positive and Negative
ffect Schedule (PANAS, Watson et al., 1988). The groups did not differ on the Posi-

ive  Affect scale of the PANAS [t(20) = 0.70; n.s.; d = 0.31], but PPs scored significantly
igher than HCs on the Negative Affect scale [MPP = 22.27, SD = 4.80; MHC = 14.36,
D  = 2.73; t(16) = 4.75; p < 0.001; d = 2.38]. The PPs also scored significantly higher
n  the Sensation Seeking Scale [Zuckerman, 1984; MPP = 24.18, SD = 4.4; MHC = 19.27,
D  = 5.73; t(20) = 2.25; p = 0.04; d = 1.01]. The two  groups did not differ with respect
o  either state [t(20) = 1.44; n.s.] or trait anxiety [t(20) = 0.75; n.s.; d = 0.34] as mea-
ured by the German version of the State Trait Anxiety Inventory (STAI; Laux et al.,
981).

.2.  Experimental design

The design of the study closely resembled that used by Flor et al. (2002). The
ubjects participated in an aversive differential conditioning experiment, which
asted about 2 h. Two  neutral faces (black and white, 18 cm × 23 cm)  of a male person
Schneider et al., 1994) were presented on a PC monitor and served as CS+ (CS paired
ith US) and CS− (nonreinforced CS), respectively. CS+ and CS− were pseudoran-
omly presented with the constraint of a maximum of 3 consecutive presentations of
ach CS type. The type of face serving as CS+ or CS− was counterbalanced across sub-
ects. For all phases of the experiment the mean intertrial interval (ITI) was  18 + 2 s.
he CS was  presented for 6 s, with the US occurring during the final 20 ms  of the
S,  such that the CS and US coterminated. The shock stimulus was  a 20-ms bipo-

ar  electrical pulse delivered via an intracutaneous gold electrode placed on the
eft  middle finger (Bromm and Meier, 1984). Stimulus intensity was  adjusted on an
ndividual basis through a pre-experimental procedure in which detection and pain
hresholds were determined along with pain tolerance level. Stimulus intensity was
hosen such that it was  perceived as moderately painful. The PP and HC groups did
ot  differ with regard to stimulus characteristics (Table 1).

The experiment was conducted in three phases. In an initial habituation phase,
he subjects received 12 presentations of CS+, CS−,  and US in random order. The
cquisition phase consisted of 96 conditioning trials (48 CS+, 48 CS−). The CS+ was
lways followed by the aversive painful electric shock, whereas the CS− never was.
he  extinction phase comprised a total of 48 (24 CS+, 24 CS−) trials without US
resentation. The startle stimulus consisted of a 50-ms, 95-dB broadband (“white”)
oise burst delivered binaurally through headphones. Six startle stimuli were pre-
ented during the habituation phase, two each during ITIs following each of the

 stimulus categories (CS+, CS−,  US). During acquisition, 12 startle stimuli were
dministered for each stimulus category, and during extinction, 8 were adminis-
ered for each. For the CS, startle stimuli were presented randomly within 2–3 s
fter CS onset (Bradley et al., 1993). For the US, the startle stimulus occurred 150 ms
fter stimulus onset. Startle stimuli were presented during ITI periods in all three
hases. The startle stimulus was presented at the earliest 4 s after CS offset and at
he  latest 4 s prior to CS onset.

Using an animated ratings display, the Self Assessment Manikin (SAM, Bradley
nd Lang, 1994), ratings of valence (from 1, indicating “pleasant” to 9, indicating
unpleasant”) and arousal (from 1, indicating “arousing” to 9, indicating “calm”)

ere obtained for the CSs and the US at mid-habituation, at the end of habituation,

nd after every 12th acquisition and extinction trial. In addition, subjects rated the
S-US contingency (“How likely is it that the electric stimulus will follow now?”)
n  a visual analogue scale ranging from −100 (=“US will absolutely certainly not
sychology 90 (2012) 50– 59

follow”) to +100 (=“US will absolutely certainly follow”) at these same points during
the procedure.

2.3. Physiological recordings

Physiological data were sampled at a rate of 251 Hz in a continuous recording
mode. Except for skin conductance sites, the skin at each electrode site was treated
during the hookup process with alcohol and abraded with Omniprep paste or fine-
grained sand paper to ensure electrode impedances below 5 k�. Integrated EMG
activity was measured from the m. corrugator supercilii bilaterally and from the left
m.  orbicularis oculi, using the placement described by Blumenthal et al. (2005), to
record ‘frown’ response and startle blink reflex, respectively. Signals were recorded
using Coulbourn V75-01 bioamplifiers (Coulbourn Instruments, Allentown, PA, USA)
set  to a band width of 90–1000 Hz. Ag–AgCl electrodes (4 mm in diameter) filled with
TECA electrolyte were used for the recordings. Skin conductance response (SCR)
was recorded using 11 mm Ag–AgCl electrodes filled with KY jelly and placed on
the thenar and hypothenar eminences of the non-dominant hand as described by
Fowles et al. (1981). To record SCR, a Rimkus Medizintechnik bioamplifier (Rimkus
Medizintechnik, Parsdorf, Germany) with a bandwidth of 0.25–10 Hz was employed.
The  electrocardiogram was recorded from electrodes placed bilaterally on the lower
rib cage. Signal amplification was  achieved by a neonatal monitor 303A (Biomedical
Systems Inc.). R-waves were detected by a Schmitt trigger.

The electroencephalogram (EEG) was recorded from 9 scalp electrodes (F3, F4,
C3,  C4, P3, P4, Fz, Cz, Pz) positioned according to the International 10–20 system and
referenced to linked mastoids, using Neuroscan SynAmps (Neuroscan, Neurosoft
Inc., Sterling, VA, USA) DC amplifiers. The continuous EEG signal was filtered from
DC  to 30 Hz. The Electro-Cap System (Electro-Cap International Inc. [ECI], Eaton,
OH,  USA) with tin electrodes of 10 mm diameter filled with ECI electro gel was used.
Horizontal and vertical electrooculographic activity was also recorded for purposes
of ocular artifact correction.

2.4. Data reduction and analysis

2.4.1. Peripheral measures
A  computer program developed by Globisch et al. (1993) was used for scoring

the  SCR. The conditioned SCR was defined as the maximum response in the time
window from 1 to 4 s after CS onset (Prokasy and Kumpfer, 1973). SCR amplitudes
below 0.05 �S were classified as zero responses. A log10(1 + SCR) transformation
was employed to normalize the SCR data.

The same computer program used for SCR scoring (Globisch et al., 1993) was
used to score startle eyeblink amplitude within a time window of 30–120 ms  after
the onset of the acoustic (“white noise”) startle stimulus. The amplitude of the startle
response was  defined as the difference between the footpoint and peak of the blink
response within the above-mentioned time window. Startle response latency was
defined as the time between the onset of the startle stimulus and the footpoint of
the  startle blink. If a blink response was  not evident during the scoring window, the
value of the startle amplitude was set to zero.

For EMG, averages were computed for every 0.5 s of the 6 s CS presentation and
for  1 s after CS offset, and these average values were baseline-corrected by subtract-
ing from each the mean EMG  activity level during the 1-s period preceding onset of
the CS. Then, based on previous findings (Flor et al., 1996, 2002), the mean EMG  level
during the 500 ms  preceding the onset of the US was  defined as the conditioned
response. The unconditioned response was defined as the mean EMG  amplitude
occurring in a time window of 1–1.5 s after US offset. For heart rate (HR), interbeat
intervals were computed offline from the R-wave data and converted to beats-per-
minute values for each 500 ms  segment of the 3-s baseline preceding CS onset, the
6-s  CS interval, and the 5-s recovery period following CS offset by weighting each
beat according to the proportion of the interval it occupied. For statistical analysis,
1-s  averages were computed for the 5 s of CS presentation prior to US delivery.

2.4.2. EEG activity
All data from trials in which EEG signal activity fell outside the measurement

range of the amplifier (+200 mV) for more than 1 s were excluded. Eye movement
correction was performed using the method described by Berg (1986). Analyses of
N100, P200, P300, LPC, and CNV measures for the acquisition and extinction phases
were based on the grand averages of all trials for each phase. ERP baseline correction
was carried out using a baseline of 100 ms except for CNV, for which a baseline of
500  ms  prior to CS onset was  employed. N100, P200 and P300 peaks were identified
by  visual inspection within a time window of 80–180 ms (N1), 180–250 ms (P2), and
250–800 ms  (P3) post-CS onset. iCNV was  determined as the area under the curve
during the time interval of 0.5–1.5 s following CS onset and tCNV was measured as
area  under the curve for the time interval of 5–6 s after CS onset.

2.5. Statistical analyses
phase of the conditioning procedure. Unless otherwise specified, group (PP vs.
HC)  × CS type (CS+ vs. CS−)  × time (block of trials) repeated measures ANOVAs
were computed. Startle responses were analyzed by collapsing the responses for
the  CS+ and CS− during the acquisition and extinction into four and two trial blocks,
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Fig. 1. Valence rating (SAM) for CS+ and CS− across all three experimental phases
for the psychopaths (PP) and healthy controls (HC). During acquisition both groups
differentiate the CS+/−. Ratings of CS+ unpleasantness increase significantly over
time. Arousal rating (SAM) for CS+ and CS− across all three experimental phases
for the psychopaths (PP) and healthy controls (HC). During the acquisition phase
both groups differentiate the CS+/−. Contingency rating (SAM) for CS+ and CS−
across all three experimental phases for the psychopaths (PP) and healthy controls
(HC). During acquisition both groups differentiate the CS+/−. Furthermore, the US
Y. Rothemund et al. / Biolo

espectively. SCR was compared across 8 trial blocks during acquisition and 4 trial
locks during extinction. For corrugator and HR, the four blocks of trials during
cquisition and the two during extinction were averaged. The seconds comprising
he interval from CS onset to US onset were added as a Time factor into the analyses
or corrugator and HR, and hence for these measures, 12 time points each compris-
ng  the four averaged trial blocks for acquisition and the two for extinction were
nalyzed. Otherwise, the first and second halves of the acquisition and extinction
hases were compared. In addition to factors of Group, CS type, and Time, for the ERP
omponents and slow cortical potentials, hemisphere (right vs. left) and topography
frontal vs. central vs. parietal) were included as additional within-subject factors
n  the repeated measures ANOVAs. Valence, arousal, and CS-US contingency rat-
ngs were analyzed across all 8 rating times during acquisition, across the 4 ratings
btained during extinction, and across the 2 ratings obtained during habituation.

For all analyses, a Greenhouse-Geisser correction was applied if the sphericity
ssumption was  not met. In addition, unless otherwise noted, the level of sig-
ificance for post hoc tests was Bonferroni-adjusted to yield a family-wise alpha

evel  of p = 0.05. Demographic and questionnaire data for the two  groups were
ompared using two-tailed t-tests for independent samples, or, where appropri-
te, Mann–Whitney U-tests. Effect sizes were calculated for all group comparisons
etween psychopaths and healthy controls, using Cohen’s d for the calculation of
ffect size for independent t-tests and �2 for multivariate comparisons. The SPSS
oftware package was  used for all statistical analyses.

. Results

.1. Ratings

.1.1. Valence
During habituation, there were no significant group differ-

nces between PPs and HCs. CS+ and CS− were rated similarly
n the two groups (Fig. 1). During acquisition, the valence ratings
howed a significant main effect for CS type [F(1,19) = 7.6; p = 0.01;
2 = 0.23], indicating successful CS+/− differentiation across both
roups, and a significant Time effect [F(7,133) = 5.9; p = 0.003;
2 = 0.08] indicating a general increase in unpleasantness ratings
ver trials. A significant CS type × Time interaction [F(7,133) = 3.56;

 = 0.03; �2 = 0.05] was  also observed, indicating that ratings of
S+ versus CS− unpleasantness increased over time. No signifi-
ant group [F(1,19) = 3.05; n.s.] or group-related interaction effects
ere evident during acquisition. During extinction, a significant
S type × Time interaction [F(3,60) = 4.55; p = 0.01; �2 = 0.04] was
ound, indicating a decrease in CS+ unpleasantness ratings over
ime.

.1.2. Arousal
During habituation, no significant differences between the two

roups and no significant effect of CS type were observed, indi-
ating similar initial levels of arousal for the two CSs in both
roups (Fig. 1). During the acquisition phase, CS type became
ignificant [F(1,19) = 26.67; p < 0.001; �2 = 0.22], indicating CS+/−
ifferentiation in both groups. There were no significant effects

nvolving group during acquisition. During extinction significant CS
ype [F(1,20) = 6.08; p = 0.02; �2 = 0.01] and CS type × Group × Time
F(3,60) = 2.98; p = 0.04; �2 = 0.01] effects were found, reflecting a
eduction in CS+/CS− differentiation in arousal ratings for the PPs
mean CS+ vs. CS−:  t(10) = 0.99; n.s.; d = 0.63) compared to the HCs
mean CS+ vs. CS−:  t(10) = 2.61; p = 0.03; d = 1.65) that became more
ronounced over time.

.1.3. Contingency
During habituation, none of the effects for contingency ratings

eached significance, indicating equal US expectancy in the two
roups. During the acquisition phase, a significant CS type effect
F(1,19) = 421.81; p < 0.001; �2 = 0.96] was found, indicating overall

ood CS+/− differentiation. In addition, a significant CS type × Time
nteraction was evident [F(7,133) = 6.46; p = 0.005; �2 = 0.25], indi-
ating an increase in US expectancy to the CS+ and a decrease in US
xpectancy to the CS− across acquisition trials (Fig. 1).
expectancy to the CS+ increases significantly over time whereas US expectancy to
the  CS− decreases over trial time.

3.1.4. Valence and arousal ratings of the US
The two groups differed with respect to valence ratings of the

US during habituation [F(1,20) = 4.67; p = 0.04], indicating higher
unpleasantness ratings of the US in the HCs although pain ratings
did not significantly differ. No other group differences in valence
or arousal ratings of the US or of non-painful electrical stimulation
were evident during habituation, acquisition, or extinction.

3.2. EMG reactivity

3.2.1. Left corrugator
During habituation, no group or CS type effects were sig-
nificant. During the acquisition phase, a significant CS type
effect [F(1,20) = 5.16; p = 0.03; �2 = 0.04] indicated overall success-
ful CS+/− differentiation (Fig. 2). During extinction, a significant
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Fig. 2. Conditioned response of the left and right corrugator muscles for CS+ and
CS−  across all three experimental phases for the psychopaths (PP) and healthy con-
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tle response only [HCs > PPs; F(1,20) = 5.62; p = 0.03]. No significant
group difference in response to the US was evident for any other
peripheral physiological measure or any rating measure (all n.s.).
rols (HC). During acquisition, the left corrugator indicates overall successful CS+/−
ifferentiation.

S type × Time interaction [F(1,20) = 8.72; p = 0.008; �2 = 0.04] indi-
ated a decrease in corrugator activity over trials.

.2.2. Right corrugator
For the right corrugator, no significant group, time, or CS type

ffects were observed during the acquisition, habituation or extinc-
ion phases (Fig. 2).

.3. Startle reflex modulation

During habituation, a significant group effect was observed
F(1,20) = 6.25; p = 0.02], indicating significantly higher star-
le amplitudes in the HC group to both CSs (CS+; HC
s. PP: t(20) = −2.34; p = 0.03; d = −1.05; CS−,  HC vs. PP:
(20) = −2.55; p = 0.02; d = −1.14). During acquisition, signifi-
ant group [F(1,20) = 7.09; p = 0.02] and CS type [F(1,20) = 10.69;

 = 0.004; �2 = 0.03] effects were found (Fig. 3). In addition, a
ignificant CS type × Group interaction [F(1,20) = 9.28; p = 0.006;
2 = 0.03] was evident, indicating a lack of emergence of star-
le potentiation for CS+ versus CS− in the PP group (all
locks of trials CS+ vs. CS−:  n.s.) compared with robust
otentiation in the control group (first block CS+ vs. CS−:

 = 0.05, all other blocks 2.34 < t(10) < 3.20; 0.01 < p < 0.04). Dur-
ng the extinction phase, significant effects were evident for
roup [F(1,20) = 4.76; p = 0.04], CS type [F(1,20) = 5.45; p = 0.03;
2 = 0.02], CS type × Time [F(1,20) = 5.57; p = 0.03; �2 = 0.01], and
roup × Time [F(1,20) = 6.98; p = 0.02; �2 = 0.03], indicating a reduc-

ion in startle reactivity for the PPs (CS+: M = 221.4; SD = 306.1;

S−: M = 182.8; SD = 266.5) as compared to the HCs (CS+: M = 557.5;
D = 413.7; CS−:  M = 436.6; SD = 302.9) that was  especially pro-
ounced in the first part of the extinction phase (Fig. 3).
Fig. 3. Startle reflex amplitude (EMG activity of the left m.  orbicularis oculi) for CS+
and  CS− across all three experimental phases for the psychopaths (PP) and healthy
controls (HC).

3.4. Skin conductance responses

During habituation, a significant group effect was observed
[F(1,20) = 8.39; p = 0.009], with the PPs showing generally lower
SCRs than the HCs. This group effect was also evident during acqui-
sition [F(1,20) = 14.54; p = 0.001; see Fig. 4], along with a significant
effect of CS type [F(1,20) = 14.72; p = 0.001; �2 = 0.18], indicating
robust CS+/− differentiation across groups. During the extinction
phase, a significant group effect was  also found [F(1,20) = 5.68;
p = 0.03], again indicating generally lower SCR in the PPs than the
HCs.

3.5. Heart rate

During the habituation phase, no significant effects were
observed for HR. During the acquisition phase, a significant con-
stant decline in HR level was  evident from CS onset to CS offset, and
from CS onset to US onset (linear trend F(1,20) = 28.24, p < 0.001; see
Fig. 5). During the extinction phase, no significant CS type or Group
effects were found.

3.6. Physiological responses to the US

Analyses evaluating group differences in responses to the US
during the acquisition phase yielded a significant effect for the star-
Fig. 4. Skin conductance response (SCR) for CS+ and CS− across all three experi-
mental phases for the psychopaths (PP) and healthy controls (HC).
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ig. 5. Change in heart rate during the presentation of CS+ and CS− averaged across
ll  acquisition trials and all extinction trials for the psychopaths (PP) and healthy
ontrols (HC).

.7. Event-related potential components

.7.1. N100
During habituation, a significant effect was found for Loca-

ion [F(2,30) = 7.77; p = 0.007; �2 = 0.12]. In addition, significant
S type × Location × Group [F(2,30) = 7.01; p = 0.003; �2 = 0.06] and
emisphere × Location × Group [F(2,30) = 3.51; p = 0.04; �2 = 0.03]

nteractions were found, along with a significant 4-way CS
ype × Hemisphere × Location × Group interaction [F(2,30) = 4.27;

 = 0.02; �2 = 0.01], indicating greater activity in the HC than the
P to the stimuli at central and parietal sites of the right hemi-
phere (Fig. 6). During acquisition, a significant group effect was
bserved [F(1,16) = 10.51; p = 0.005], indicating an overall lower
100 response in the PPs. During extinction, no significant effects

or Group or CS type were observed.

.7.2. P200
During habituation, no effects were significant. Dur-

ng the acquisition phase, significant effects were found
or CS type [F(1,16) = 7.96; p = 0.01; �2 = 0.01] and for CS
ype × Location × Group [F(2,32) = 5.12; p = 0.02; �2 < 0.01], indi-
ating larger P200 response to the CS+ in the PPs at frontal and

entral sites (Fig. 6). During the extinction phase, a significant
S type × Group effect was observed [F(1,16) = 12.60; p = 0.003;
2 = 0.02], reflecting diminished P200 response to the CS+ versus
he CS− in the PP group as compared to enhanced P200 for
Fig. 6. Grand averages of event-related potentials (N100, P200, P300) of all acquisi-
tion and extinction trials from three electrode sites are shown for the psychopaths
(PP) and the healthy controls (HC). CS onset starts at time zero.

CS+ versus CS− for the HC group. In addition, a significant
Time × CS type × Hemisphere × Group interaction was observed
[F(1,16) = 6.59; p = 0.02; �2 < 0.01], with the PPs showing enhanced
P200 response to the CS− during the first block of extinction at
frontal and central sites of the left hemisphere.

3.7.3. P300
For the habituation phase, no significant effects were found

for Group or CS type. During acquisition, significant main effects
were observed for CS type [F(1,16) = 5.2; p = 0.04; �2 = 0.07], indi-
cating successful CS+/− differentiation, and for Hemisphere and

Location, reflecting larger overall P300 amplitude in the right hemi-
sphere and at central and parietal sites (Fig. 6). No significant
effect involving group was observed during acquisition. During the
extinction phase, Hemisphere [F(1,16) = 7.7; p = 0.01; �2 = 0.07] and
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ocation [F(1,16) = 6.3; p = 0.02; �2 = 0.18] were significant, indicat-
ng a larger P300 amplitude in the right hemisphere and at central
nd parietal sites. Significant interaction effects were not observed.

.7.4. Contingent negative variation

.7.4.1. Initial CNV (iCNV). No significant effects were observed
uring habituation. During the acquisition phase, a signifi-
ant Time × CS type × Hemisphere × Group interaction was  found
F(1,12) = 9.11; p = 0.01; �2 = 0.01], reflecting a larger iCNV to the
S+ during the second block of trials at the left hemisphere in PPs.

n addition, a significant Time × Hemisphere × Location × Group
nteraction was evident [F(2,24) = 4.5; p = 0.02; �2 = 0.02], indica-
ive of larger iCNV during the second block of trials at the left
emisphere at central and parietal sites in PP subjects. During
xtinction, no significant effects were found involving CS type or
roup.

.7.4.2. Terminal CNV (tCNV). During habituation, no effect reached
tatistical significance. During the acquisition phase, a significant
ocation × Group interaction was observed [F(2,24) = 3.6, p = 0.04;
2 = 0.10], indicating a lower tCNV at frontal and a larger tCNV at
entral sites in the PP group as compared to the HC group. Results
or the two groups were similar at parietal sites. During extinction,

 significant Time × Group interaction was present [F(1,12) = 9.15;
 = 0.01; �2 = 0.11], indicating a larger tCNV during the second block
f trials versus the first in PP compared with a smaller tCNV during
he second block versus the first for HC.

.7.4.3. Late positive complex (LPC; 300–400 ms  after stimulus onset).
uring habituation, no significant effect was observed for Group
r CS type. During the acquisition phase, a significant main effect
as found for CS type [F(1,16) = 5.68; p = 0.03; �2 = 0.08], along with

 significant CS type × Time × Location interaction [F(2,32) = 3.86;
 = 0.03; �2 = 0.01], indicating a larger LPC to the CS+ during the first
art of the acquisition phase at central and parietal sites. During
xtinction, no significant effects were found for Group or CS type.
owever, main effects of Hemisphere and Location were evident,

ndicating increased reactivity in the right hemisphere at central
nd parietal sites.

. Discussion

This study used peripheral measures, subjective ratings, and
RP components to investigate aversive fear conditioning in high
sychopathic individuals. The results confirm that psychopaths
re deficient in fear-conditioning as previously suggested (Lykken,
957; Hare and Quinn, 1971; Hare et al., 1978; Veit et al., 2002;
irbaumer et al., 2005). The PP group showed associative learning
eficits as indexed by a lack of differential startle response, lack
f increased skin conductance, and a lack of increased corrugator
ctivity to the CS+. These deficits do not appear to be attributable
o insufficient evaluation of or reactivity to the noxious US stim-
lus itself, as indicated by a lack of significant group differences

n valence and arousal ratings of the US, and SCR, HR, and cor-
ugator responses to the US in the learning phase. Notably, the
roups did differ (PP < HC) with respect to startle blink reactivity
o the US during acquisition. However, a parallel group difference
PP < HC) in blink reactivity to startle noise stimuli was evident
cross habituation, acquisition, and extinction phases—indicating

 group difference in general startle reactivity across varying con-
itions of the experiment. This group effect might conceivably

eflect a difference in contextual fear related to the occurrence
f shocks within the experimental situation (cf. Grillon and Davis,
997), given that differences in general startle reactivity have not
een reported for high versus low psychopathic groups in simple
sychology 90 (2012) 50– 59

picture-viewing studies (e.g., Levenston et al., 2000; Patrick et al.,
1993; Vanman et al., 2003).

In contrast with previous findings indicating higher levels of
pain tolerance in high and low psychopathic prison inmates com-
pared to normal controls (Fedora and Reddon, 1993), we found no
difference between PP and HC groups in pain tolerance or pain
threshold associated with the US. We also found no difference
between PPs and HCs with respect to detection threshold for elec-
tric shock, which is consistent with findings reported by some
previous investigators (Fedora and Reddon, 1993) but not others
(e.g., Hare, 1968). However, we did find a group difference (PP < HC)
with respect to valence ratings of the US during habituation sug-
gesting that the same level of painful experience was  viewed as less
unpleasant in the PP.

Attentional processing of the conditioned stimuli as indexed by
the P200, the P300, and also the anticipation-related CNV appeared
equal or superior in the PP group. Contrary to our previous results
(Flor et al., 2002), the initial CNV component indicated superior
left-lateralized CS-type processing in PPs as compared to HCs. The
terminal CNV, however, showed a lower magnitude at frontal and
a larger magnitude at central sites in the PPs as compared to the
HCs. Based on findings from neuroimaging studies, an explanation
for the lower activity at frontal electrode sites in the PPs may be
reduced activity in the limbic-prefrontal circuit (Birbaumer et al.,
2005) associated with reduced volume in prefrontal gray matter
(Yang et al., 2005).

Similar to our previous results (Flor et al., 2002), arousal rat-
ings data indicated expected CS+ and CS− differentiation in both
groups. In parallel with this, but in contrast with our earlier results
indicating impaired CS+/− differentiation in the PPs (reflecting
evaluation of the CS− as more aversive compared with the HCs;
Flor et al., 2002), results for valence ratings suggested comparable
CS+/− differentiation in both groups. However, a direct comparison
of results across the current and earlier studies is complicated by
the fact that different stimulus modalities (odor vs. electric shock)
and different trial times (10 vs. 8 acquisition blocks) were used
in the two  studies. Unpleasantness ratings for the CS+ increased
in both groups from the first to the second half of the acquisition
phase. In addition, consistent with prior results (Birbaumer et al.,
2005), contingency ratings evidenced a significant CS type effect
with no significant group difference. Also in accordance with pre-
vious results (Hare and Quinn, 1971; Herpertz et al., 2001; Flor
et al., 2002; Pastor et al., 2003; Benning et al., 2005; Birbaumer
et al., 2005), skin conductance response was generally smaller
for PPs as compared to HCs, and as reported earlier (Flor et al.,
2002), did not relate to arousal ratings, which were similar in both
groups.

Notably, in accordance with previous work (Flor et al., 2002),
right corrugator EMG  activity and startle reflex amplitude showed
a lack of CS+/CS− differentiation in the PP group. This pattern of
results provides further support for the hypothesis of impaired
emotional learning capacity in psychopaths. The current data
also coincide with results from neuro-imaging studies demon-
strating reduced activation of the amygdala (Kiehl et al., 2001;
Birbaumer et al., 2005; Most et al., 2006; cf. Kiehl, 2006) and
orbitofrontal cortex (OFC) during affective stimulus processing in
psychopaths (Birbaumer et al., 2005). In view of evidence that
intact amygdala function is crucial for developing anticipatory
SCRs (Bechara et al., 1999) and that amygdala-OFC interac-
tion is crucial for encoding expected outcomes during learning
(Schoenbaum et al., 1998), our data provide further evidence that
high psychopathic participants learn some of the CS-US associa-

tion without processing the emotional significance of stimuli, as
demonstrated by deficient anticipatory SCR and a failure to exhibit
enhanced startle reactivity over the course of acquisition or during
extinction.
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In contrast with SCR and startle, HR did not differentiate
etween CS+ and CS− in either group during acquisition or extinc-
ion. This result matches with our previous report (Flor et al., 2002),
lthough not with earlier work demonstrating enhanced HR accel-
ration during anticipation of aversive stimuli in psychopaths (cf.
are and Craigen, 1974; Hare et al., 1978). Consistent with previous

esults (Levenston et al., 2000), a trend toward greater HR orient-
ng to the CS was evident for PPs compared with HCs (Fig. 5), but
his effect was not significant. Overall, in accordance with previous
eports showing HR deceleration in response to pictures of facial
xpressions (Dimberg et al., 1986), HR decelerated as a function of
ime in both groups during acquisition.

In contrast with observed deficits in emotional stimulus pro-
essing, cognitive functions in the PP group appeared to be intact
s suggested by differential contingency ratings for CS+ versus
S−,  and equal or superior magnitudes of P200, P300, CNV, and
PC responses. Similar to our previous results (Flor et al., 2002),
Ps exhibited increased P200 amplitude to the CS+ at frontal and
entral sites, which is in accordance with the literature indicating
ncreased amplitude of this component as a function of stimulus
ntensity (Blenner and Yingling, 1994; Kiehl, 2006) and stimulus
alence (Montoya and Sitges, 2006). However, PPs and HCs did
ot differ with respect to P300 in the current study. The litera-
ure concerning the P300 component in psychopaths is notably
nconsistent. Whereas some studies have reported enhanced P300
mplitude in high psychopathic individuals (Raine and Venables,
988; Raine, 1989, 1992; Flor et al., 2002), others have reported
educed P300 values (Kiehl et al., 1999a, 2000, 2006) or no differ-
nce between psychopaths and non-psychopaths (Jutai et al., 1987).
owever, these studies did not investigate aversive conditioning

n psychopaths, but rather attention, orienting, and information
rocessing using procedures such as go/no-go tasks, visual oddball
aradigms, etc.

Contrary to previous results (Raine et al., 1990; Flor et al., 2002),
100 amplitude in the current study was significantly smaller in the
Ps as compared to the HCs, suggesting some reduction in atten-
ional processing in the PP group. However, in line with previous
esearch results (Forth and Hare, 1989; Raine et al., 1990), the ini-
ial CNV to the CS+ (also known to reflect arousal and recruitment
f attention) was found to be larger for PPs during the second block
f trials in the left hemisphere at central and parietal sites, whereas
Cs showed a larger iCNV to the CS+ during the first block of trials

n the right hemisphere at central and parietal sites. In addition,
he terminal CNV was found to be smaller at frontal and larger at
entral sites in PPs as compared to the HCs. Notwithstanding these
ffects, CS differentiation was similar in both groups.

The lower deflection of the tCNV at frontal sites for PPs is in
ccordance with results from imaging studies suggesting decreased
ctivity in orbitofrontal cortex (Veit et al., 2002; Birbaumer et al.,
005) and reduced prefrontal volume (Raine et al., 1997, 2000; Yang
t al., 2005) in psychopathic individuals. Evidence from combined
EG and fMRI studies points to the bilateral thalamus, anterior
ingulate, and supplementary motor cortex (SMA) as generators
f the CNV (Nagai et al., 2004), with the late component of the
NV maximal at the vertex as seen in the present study. This

ater component appears to be reflective of motor preparation
Birbaumer et al., 1990), whereas the earlier CNV appears to be

ore related to attentional processes and an anticipatory orient-
ng response to the stimulus (Nagai et al., 2004). Related to this, the
ate positive complex (LPC), another component known to be asso-
iated with orienting, attention, stimulus evaluation, and memory
Courchesne et al., 1975; Donchin et al., 1984; Knight, 1996), was

imilar in both groups during acquisition. Both groups showed suc-
essful CS+/− differentiation in the LPC, indicating no difference
n attention and orienting response between PPs and HCs. Taken
ogether, these data suggest that attentional orienting as indexed
sychology 90 (2012) 50– 59 57

by the CNV and LPC is undisturbed in psychopaths. However, it
appears that the emotional modulation of these cognitive processes
is disturbed, as evidenced by down-regulated activity in frontolim-
bic circuits among psychopaths. As a final point, in accordance
with previous results (cf. Hare, 1998; Flor et al., 2002), ERP find-
ings as a whole indicated superior right-hemisphere processing in
psychopaths.

A recent study (Newman et al., 2010) demonstrated that, in psy-
chopaths, the focus of attention modulated the startle response in
an instructed fear paradigm. Specifically, participants in this study
were instructed that red letters might be followed by an aversive
electric shock, whereas green letters would not. Participants’ atten-
tion was either focused on the threat information (pressing a key
depending on the color of the letter) or on threat-irrelevant infor-
mation (pressing a key depending on the letter being upper or
lower case). Psychopathic individuals had a normal startle response
in the threat-focused condition but a diminished one in the non
threat-focused condition. Hence, the conditioning deficits docu-
mented previously in psychopathic individuals may  be indicative of
an attentional processing anomaly rather than a general fear deficit
(cf. Newman et al., 1997). At first sight, these results seem to contra-
dict the findings of the present study, which proposes frontolimbic
deficiencies as the origin of deficient conditioning. However, it is
conceivable that these divergent findings may  reflect the use of
quite different paradigms. In Newman et al.’s study, as described
above, the instruction already contained explicit information about
CS-US contingency. In the study described here, this connection had
to be learned implicitly by the participants. This, combined with the
finding that reactions to the US did not differ between PPs and HCs
(with the exception of startle response), leads to the assumption
that the PPs are deficient in their ability to connect emotion-
ally relevant information, especially during an implicit learning
process.

Additionally, Newman et al. (2010) pointed out that evidence
for amygdala dysfunction may  vary depending on the attentional
requirements of a task procedure. In the current conditioning task,
we observed equal or even better attentional processing as indi-
cated by P200, P300 and CNV in the PP group compared to the
healthy controls. Thus, we  assume that our results are not influ-
enced by differential attentional processes. The findings reported
by Newman et al. may  be a special case of attentional process-
ing in psychopaths, elicited in a specific experimental setting.
Accordingly, the question of attentional deficits in psychopaths
thus warrants further investigation.

This study has some limitations that should be acknowledged.
First, the number of participants was relatively small due to the
fact that German law does not permit the study of incarcerated
subjects. Although significant effects in line with prediction were
obtained, replication with larger samples is needed to establish the
generalizability of these effects. Additionally, the possibility that
group differences may  be due at least in part to differing prior
experiences with painful stimuli for PPs as compared to HCs, lead-
ing to differing degrees of habituation to such stimuli, cannot be
completely ruled out. In addition, intelligence was not assessed in
the current sample, raising the possibility that this variable might
have affected conditioning performance. One further limitation is
that variations in incarceration experience were not systematically
assessed, precluding us from evaluating possible effects of this vari-
able on conditioning performance. Nonetheless, the findings of this
study add to a growing body of data indicating that the syndrome of
psychopathy entails basic deficits in emotional processing that are
not readily attributable to cognitive or attentional impairments.

Further research aimed at clarifying the precise neural bases of
these emotional processing deficits is needed to advance concep-
tual understanding of this disorder and perspectives on effective
prevention and treatment.
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